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To obtain from quantum mechanics directly the qualitative deductions of 
chemistry, a mathematical machinery is set up. A single vector space, and a 
dyad space relate different molecules or spatial configurations of an isomeric 
set of atoms to each other. Different electronic Hamiltonians belong to the 
dyad space and are treated so as to be used directly without the intermediary 
of orbitais, parameter choices, or variational calculations. 
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1. Introduction and motivation 

1.1. The gap between quantum mechanics and chemistry 

Dirac said in 1929 that "the underlying physical laws necessary for the mathemati- 
cal theory of chemistry are thus completely known, . . . "  [1]. 

However, Todd has recently stated [2] that organic chemistry had developed 
mainly in terms of a very few, simple, empirical rules pertaining to first 2-Dim, 
then 3-Dim structural formulas based mainly on the tetrahedral nature of the 
carbon atom. On the inorganic side, that "inert gases" like Xe too, should form 
chemical compounds was not foretold by quantum mechanics but was experi- 
mentally discovered in the sixties [3]. The entire, exciting, new field of 
organometallic chemistry and the related catalysis by metals show many unusual 
electronic effects, bonding situations, and structures such as hydrogen bridged 
and other osmium [4], rhenium, cobalt, plat inum.. ,  cluster compounds [5], and 
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multiple metal-metal bonds [6]. These phenomena too by and large were not 
predicted by quantum theory. 

In the opinion of this author, the above gap exists, not because quantum mechanics 
is incapable of leading directly to a derivation of qualitative chemistry or of 
providing the basis for chemical reasoning. Nor are the intellectual achievements 
and additional language provided for chemists by the Lewis-Langmuir octet rule 
(which pre-dated quantum theory) [7], the valence-bond (VB) and resonance 
picture of Pauling [8], and the more spectroscopic then chemical molecular 
orbital (MO) methodology of Hund, Mulliken, Hfickel [9, 10] and Walsh, [11] 
extended later by Fukui, [ 12] Woodward and Hoffman [13] and others in ingenious 
ways to organic chemistry, to be undermined. What nevertheless appears to be 
needed are additional mathematical tools to unlock the chemistry, and particularly 
the all crucial qualitative chemistry and reasoning of the chemical practitioners 
from the Schr6dinger equation. 

1.2. Chemistry as transformation of chemicals 

Chemistry basically deals with the spatial, structural transformations of one or 
several molecules, or an isomeric assembly of atoms. The constitutional, 
geometric, or stereo-isomers of a molecule differ in the 3-dim spatial arrangements 
and/or  connectivity of a given set of M atoms. In the Born-Oppenheimer [14] 
or adiabatic approximation, at each set {/~i}--- R of nuclear positions there is a 
fixed electronic potential energy (P.E.), Eelec ({/~i}) and a total P.E., U({/~i}) which 
includes the electrostatic nuclear repulsions. 

Chemical transformations take place on the potential energy surface U(R) 
of the given isomeric assembly (atom numbers conserved) of atoms. The 
sets of reactants, products, isomers, transition states are special points on the 
U(R). 

Quantum theory in the past has dealt mainly with individual, static molecular- 
electronic structures. Both in the one [15] and in the many-electron [16] approxi- 
mations, the electronic wave function (w.f.), and the energy, Ee~c(R) are calculated 
at one or more points R ~ e3M, the Euclidean 3M-dim space, at a time. 

For a derivation of qualitative chemistry however, one needs to figure out the 
global relationships between the different points of the manifold Er embed- 
ded in CaM, and/or  of U(R). 

Mulliken's separated atoms ~--~ "united atom" orbital correlation diagrams, [17] 
extended to bent,~-~linear triatomics by Walsh [11] are steps in that direction as 
are the works of Woodward and Hoffmann [13]. The latter used orbital correlation 
diagrams between different organic molecular structures limited mainly to hydro- 
carbons. These methods are based on the molecular orbital (MO) approach and 
are dependent on the existence of point groups symmetries [18] But most 
molecules of chemistry lack spatial symmetry, yet their qualitative chemistry is 
not of a different nature than their cousins exhibiting high degree of point group 
symmetries. 
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The valence-bond method (VB) [8] also dealt with individual static structures. 
State correlation diagrams as in the Wigner-Witmer rules [19] somehow did not 
find much popular usage amongst practicing chemists. 

In the present set of papers, we derive a quantum mechanical machinery suitable 
for qualitative deductions of chemistry, but also rigorously extendable and relat- 
able to quantitative methodology. In particular, a) we generate a single vector 
space (-= the "valency space") from which all molecules are constructed thereby 
displaying their continuous as well as discrete relationships to each other, b) 
qualitative electronic properties are obtained directly from the conventional 
structural formulas (SF) or from the X-ray crystallographic ORTEP diagrams 
(3 dim geometric structures) without the intermediary of orbitals, parameter 
choices, or computer calculations, c) the space containing all the molecules of 
an isomeric assembly of atoms becomes the space containing all the electronic 
Hamiltonians. It is not necessary to obtain the individual orbitals, or the ground 
state wave functions first, as required in the MO and VB methods. Deductions 
follow directly from manifolds of Hamiltonians, d) various aspects of molecular 
electronic quantum theory and diverse mathematical constructs for them, such 
as Lie algebras, symmetries both in the Hilbert space and in Euclidean 3-space, 
various groups, many-electron states as higher rank tensors, some new covariance 
principles are obtained systematically as algebraic structures built on the valency 
vector space. 

2. The fundamental valency vector space 

Each atom i, infinitely far apart from all others, has a one-electron, Hilbert space 
5f2(/~,-) located a t / ~  e s3. For such a hydrogen atom for example, the hydrogenic 
eigenvectors at /~ would form a complete basis set for the infinite-dim 5~2(/~'i). 
(For a many-electron atom, the basis set may start out with the self-consistent 
field (SCF) orbitals). The Hilbert space for an independent collection of atoms 
then would be ~2(/~)@5f2(/~2) �9 �9 �9 @~2(/~M). This is the space implied in both 
the MO and the VB methods as they both use atomic orbitals {le,(/~i))} centered 
on various/~.  The MO takes linear combinations of them, then products, the VB 
starts directly with the products of AO's. 

At any interatomic distance of physical, chemical interest however, the basis set 
as a union for the collection {~g2(/~)} is overcomplete as can be seen from the 
"overlap matrix", 

A = {( e~ (/~,)] e~(/~j))}. 

Even if the lowest AO's of neighboring atoms did not overlap much, higher 
orbitals would do so more and more leading to a singular A. 

For a set of atoms close to each other, one could indeed take just a single, e.g. 
~2(/~)  = 5f2 and with the single atomic basis set cover any wave function anywhere 
in e3, not just around /~. But this is highly impractical. Expansion of an AO at 
/~j#, in terms of a basis for ~2(/~,) is slowly convergent. 
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A single and not overcomplete basis for any valency shell one-electron wave 
function for a molecule or isomeric assembly is obtained by taking the ni valency 
AO's of each atom (ni = 1 for H ;  n i=4  for {B, C, N, O, F}; n~ =9 for transition 
metals, etc. corresponding to {1 s}, {2s, 2p}, {3d4s4p~, etc. respectively). 

At the typical distances 1/~ -/~j[, the valency overlaps (e~,(Ri)[e~(R~)) < 1 and the 
finite dimensional A is non-singular [20]. 

Most of the qualitative chemistry involves the ground and' excited valency shell 
states of a molecule or of a reacting assembly. Thus we can confine ourselves 
for the qualitative purpose at first, to the finite (n)-dimensional vector field V,(/~). 
The m atoms, i~{1, 2 , . . . ,  m} 

V n ( ~ l ~ )  = V r l I ( R I ) O  V n 2 ( ~ l ~ 2 ) ( ~ .  �9 o V.,,,(Rm)l (1) 

each with its ni valency shell AO's constituting a basis for V., centered at/~i c e3 
give a linear vector space V.(/~) of 

Dim V.(lq)= n = ~ n; 
i > l  

defined at the configurational point R c e3,.. The { V.(R)} for all /~ ~ e3m and 
/~ = Y~ i%l O/~i define our fundamental valency vector space field { V.(Iq)}. 

As the molecule (or reacting assembly) of the spatial configuration {/~i} changes 
its shape in e3, the Dim = 3m vector R ~ e3,. is transformed into another vector 
/~'c E3,. and V.(/~)~ V.(/~'). 

At each such /~, the vector spaces {V.(/~)} are isomorphic to each other, 

V o ( / ~ ) ~  V . ( / ~ ' ) ~  V . ( / ~ " )  . . . (2)  

and hence to a standardized linear vector space {(V.)) which is defined irrespective 
of a particular/~. If  we omit the double brackets, og~the (/~), i.e. write just V., 
we shall imply ((V.)). 

3. The one-electron valency shell Hamiltonians and the Dyad space field 

For each spatial configuration {/~i} ~ /~  fixed by the positions of the nuclei, there 
is a one-electron effective Hamiltonian h(/~) for the molecule or assembly. The 
h may be e.g. that of the usual 2- or 3-dimensional Hiickel method [9, 10], or the 
h ~fr of a more complete method. 

The representation of h on the valency vector space field is obtained by 

acting on h : 

(3) 

h(R) = IhI = Y~ ~.~(/~)le.)(e~l (4) 
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where 

We have assumed for now that 

(e,(R,)IG(Rj)) = ~,~, (6) 

as in the usual version of  the H/ickel ( " H M O " )  method.  In reality, for neighboring 
interacting atoms, the AO's are not at all mutual ly or thogonal ,  a l though the H M O  
method (as well as VB) assumes so. However,  the formulat ion can be readily 
carried out also for non-or thogonal  bases for the Vn(/~) and in a most  general 
way as shown in another  paper  [22]. 

In Eq. (3), while I is the unity on V,(/~), it also is a projector  from the full Hilbert  
space ~2(/~) onto the valency shell space V~ c ~2. Thus IhI in Eq. (4) is actually 
the full h projected onto (Vn x V~). The {]?,.} c real or complex number  field. 

The h(R) in Eqs. (4-6) is a mixed tensor, or dyad on V,(/~), 

h(~)~ v~(~) x v~+(~). (7) 

It is also a vector on V(~2)(/~) if one views each basis dyad le.)(e~l as a basis 
vector for  V~n~. 

Thus the {h(/~)} for various spatial configurations {/~} of  our  molecule  (or reacting 
assembly) constitute i) a dyad field on e3~ a n d / o r  ii) a vector  field on e3m. 

If  we map each h(/~) onto the s tandardized dyad space (( V,)~ x (( V,+))-= Vn x V,+,, 
we get all isomeric molecules to belong in the same dyad space. Alternatively, we 
can map each h(/~) viewed as a vector in its V~,~(/~) vector  space (Dim = n2), 
onto the std. ((V(,~))-= V~ b. 

Thus towards our aim for chemistry to relate different structures and molecules to 
each other, we have obtained a single linear vector space, (or a single bilinear (dyad) 
space) containing all the isomeric spatial arrangements of an assembly of atoms 
along the electronic potential energy surface. 

For each molecular  structure there is an h(/~) whose AO representat ion from Eq. 
(4) is the hermit ian matrix {]?~} (O.N. AO basis). The elements of  ]? are also the 
coefficients of  the vector  (-= the ]?-vector) in V~,~}-= V~. The ]?-coefficients remain 
unchanged when h(/q) is mapped  into the std. (V, x V, +) or into the std. Ve. 

The set of  all isomeric structures'  {h(/~)} does not cover the space Vn x VS, (nor 
V~). That  is because R ~ e3m is also embedded  in e3. 

Any set of  n2-numbers from the real or complex fields would define a vector in 
V~. But such a vector  does not necessarily correspond to an h(/~) or a molecule.  
First, one must have ]?,~ = ]?~,. Second,  ]?~,~ (i ~ j )  is a funct ion of  the interatomic 
distance Rij = [/~i-/~;1. The ]?,,~j ( i # j )  numbers  can be arbitrary only for n = 1, 
2, 3, or 4. Beyond a cluster size of  four  atoms, not all R~j are independent ,  but  
are constrained to structures possible in e 3. 
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Thus the set o f  e3-compat ib le /3-vec tors  ( ~  {h(/~)} ; ({/~i} ~ /~ ) )  form one or more  

non-linear manifolds or varieties of Dim < n 2 in V~2) --- Vt~. 

To proceed directly from a molecule's structure (or structural chemical formulas) 
to its electronic, quantum, and stability properties, we need to classify the 
fl-vectors (~{h( /~ )} )  with respect to the manifold or variety a given /3-vector 
belongs to. This classification is carried out in Ref. [23] and will form the basis 
of an a priori  chemical transformation theory indicating qualitatively which 
molecules can react or rearrange into other 3-dim. structures. 
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